
ROTATION OF A CONDUCTING FLUID IN AN ANNULAR 
CLEARANCE UNDER TRE INFLUENCE OF A 

TRANSVERSE hiAGNETIC FIELD 

(0 VRASHCAENII PBOVODIASHCHEI ZHIDKOSTI V KOL’TSEVOM 
ZAZORE PRI NALICHII POPERECHNOGO POLIA) 

PbtMy Vo1.25, No.3, i96f, pp. 557-560 

1. Statewent of the problem. We deal with the steady motion of a 
viscous conducting incompressible fluid within the space bounded by two 
infinite cylinders of radii s and b (a < b). 
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It is assumed that the nonconducting internal cylinder rotates at con- 
stant angular velocity o, the outside cylinder being stationary, whilst 
there is also an external homogeneous magnetic field H0 which acts per- 
pendicular to the axes of the cylinders (Fig. 1). 

Under the specified conditions, electric fields and currents act along 
the direction of the axis in the fluid, and ponderomotive forces act in 
the plane perpendicular to the axis. Addition- 
ally, the currents give rise to an induced 
magnetic field in the same plane. Thus the un- 
knowns in the problem are the vector components 
of velocity v(r, 4) and magnetic field H(r, $) 
in the plane perpendicular to the z-axis (r, 

4 , Z, are cylindrical coordinates) a 

we note that it follows directly from the 
equation 

rot E=c! (1.2) 

that E = EZ = const. It will be assumed that 
E0 = 0 below, which allows us to lower the 
order of the magnetohydrodynamic equations [ 1 1 
and bring them down to the form 

824 
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rot, H == %:vxH, dir H = 0, div v = 0 

P(v~‘)v=llGv-~Pi-~jxH. j=&rotH 

(1.2) 

where u is the conductivity of the fluid, 7 the viscosity coefficient, 

P the density, c the velocity of light, j the current-density vector, 

P the pressure. 

Introduce the dimensionless variables 

(1.3) 

In these expressions, R is the Reynolds number, R, is the magnetic 
Reynolds number, M is the Hartmann number. Making use of the relation 

j X H = t [(vH) H - H’v] 

Equation (1.2) can be transformed to 

rot h = R,u x h, div h = 0, div u = 0 

Iyu = R[(uv) u + vq] + M21h2u- hh) hj 
(1.4) 

Here the operations of differentiation are carried out with respect 
to the dimensionless variable z = r/a which varies over the range 
1 < x Q X = a/a. 

The system (1.4) contains four unknown functions ur( r, c$), u+(r, I$), 

hr(r, $4. Qtrr, 41. and its solution requires eight boundary conditions. 

Four of the conditions are self evident; they arise from the sticking 
of the fluid to the walls and are of the form 

UP Ix=4 = up ls=A = us Is=* = 0, UT Ix+ = 1 (1.5) 

The remaining boundary conditions should be obtained by solving the 
electrodynamic equations 

roth=divh=O (1.6) 

over the ranges z < 1 and x > A, and the following conditions of con- 
tinuity should be inserted: 

h, = h,(a), 1~~ = hq@) for x = 1, h, = hrcb), hp = hJb) forx = h (1.i) 
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Here hCa) and h( bl are the magnetic-field strengths in the regions 
r < a and r > b respectively. 

It is finally necessary to lay down the condition that the vector hla) 
be bounded when r + 0 whilst the vector h( b, must have components h (b) = 

sin 9, h4’ b, = cos g5 for r -, 00, 
r 

corresponding to the given homogeneous 
field. 

2. Approximate eolation for small Reynolds and Hartmamn numbers. We 
assume that the parameters R, R,, M2 are small quantities of similar 
magnitude. This occurs, for instance, in the case of a very viscous but 
weakly conducting fluid in a fairly strong field H,. We write down 

Rm=c, R = a, A!!= = PE 

where E is a small quantity, a and p are finite quantities. 

(2.lj 

We look for the vectors h and u, and also the quantity Q in the form 
of an expansion 

h=ho+&--.... U=lJo+EU1+..., 4=Qo+EQl+.~~ P-2) 

It is obvious that the zero approximation for the magnetic field will 
be 

h,, z sin cp, h,, = COS rp (2.3) 

over the whole space. Furthermore, from the equation 

UOF 2 a”ov 
(Auu),= nuor - 7 - 7 - = 0 

uOV 2 auo?- 
acp ? (LNo),= Lwoq- &J_ +,z---=o acp (2.4) 

the zero approximation for the velocity emerges: 

)$ - 2” 

Uor E 0, Uow = z (AZ-- 1) 

which satisfies all the boundary conditions and corresponds to a purely 
hydrodynamic regime. We will now turn to finding the next approximation. 

In order to estimate the influence of the current on the magnetic 
field in the first approximation. it is necessary to solve the equations 

rot h = uo ,x ho, div h1 = 0 (2.6) 

or, in terms of components 
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& (XhJ + a+ = 0 , _$ A&. (x$,) - + a?!$. = x ;ErJI) sin cp (2.7) 

Assuming 

from (2.7) we find 

x2 ?k2 
A .(x) = -g- - --,-- ln 5 + 

L &-D, R(x)=-~+~lnx+~--D (2.9) 

To determine the constants C and D we use the solution of the homo- 
geneous system (2.7) over the ranges L < 1 and x > h. 

(2.40) 

and we find C, D, C(‘) and D( ” from the conjugate conditions (1.7). 

We find on calculation that 

1 
which represents the first approximation for the magnetic field. 

we now turn to the determination of the effect of the magnetic field 
on the motion of the fluid to a first approximation. 

The functions sir (f, 46)‘ a,+(~, #J) and qs (x. $1 must be found from 
the following system of differential equations: 

with the boundary conditions 

Urr = UIW = 0 for x=land+=h (2.13) 

We look for a solution to system (2.12) in the form 

air = PR (2, cp), alrp (2.14) 
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The functions Z&X), R(x, #$. Q)(x, #) and f(x, 4) satisfy the equations 

(2.15) 

The functions $(r), R and @ should vanish when x = 1 and K = h whilst 

the function X(Z) is determined by the formula 

(2.17) 

and this evidently represents the part of the pressure which balances 
the centrifugal forces which arise due to the velocity uo+. 

The function I&Z) can be found easily and has the form 

1 
(2.18) 

Q @) = i& (na _ i)‘L {4h2 [(A2 - 1) 2% In 2 - (z2 - 1) hZ In h] + (h2 - 1) (k” - 33) (x2 - 1)) 

If we differentiate the first of Equations (2.16) with respect to 4, 
we multiply the second equation of (2.16) by z and differentiate with 
respect to X, subtract the second result from the first and combine the 
result with the last equation (2.16); we arrive at a system of two 
equations with unknown functions R and #A If we put 

II = y(z) sin 2rp, CD = 2 (I) cos 2cp (2.29) 

we separate the particular solution of the system of ordinary differ- 
ential equations so obtained and eliminate 2, then for the function 
t = xy we obtain the equation 

X8 LIV + 2x2 t”’ - 9zl” + St’ = 0 (2.20) 

with the general integral 

t = /ix2 + Bx4 + -$- + D (2.21) 

on determining the constants from the boundary conditions we arrive 
at the following formulas after some calculation: 

a2 
Y (4 = *(j,3 (A”_ 1) 

4~~~~(~~-~)~~h~(h2+i)-2~z]Inh-222-4(h~-1)31n~- 

- (A2 - 1) (x2-- 1) (a2 - 22) [x2 (h2 + 1) - 2h21) (2.22) 
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12 
z (4 = fjx3 (h2 _ 1) 4 {~2(22-1)[~2(h2+1)(~2+1)-4~4]Inh- 

- x4 (12 - 1)9 In rz - (h2 - 1) (x2 - 1) (ii2 - ~9) [ h2 (~9 + 1) + z2J} (2.23) 

There only remains now the determination from Equation (2.16) of the 
components d f/b and x -’ df/a$ of the pressure gradient, and the solu- 
tion to the first approximation is finished. (Here only the zero approxi- 
mation is obtained for the pressure.) 

The next approximation can be sought in a similar way, but the actual 
computation turns out to be rather complicated even for the second 
approximation. 

3, Calculation of the moment. We make use of the results obtained in 
order to find the turning moment which must be applied to the cylinder 
in order to balance the forces of viscous friction and establish a uni- 
form rotation. 

If we make use of the expression for the frictional stress F, on the 
surface of the rotating cylinder 

(3.1) 

we find 

FCC 
- = I- g- (lb2 - 1) [ly (1) + 2’ (1) cos 2yJ] F (0) (3.2) 

a 

In this expression 

F,(n) = - 2h’ 
am’ 

$, (1) _ (3h2 - I) (k* - 1) - 4h2 In h 
8 (h” - 1)” (3.3) 

2’ (2) = h2 
4A2 (As + 2) in h - (h’ - 1) (5k2 + 1) 

8 (h’-- 1)s 

whilst F (*I is the frictional stress at r = a in the corresponding 
ordinaryahydrodynamic problem. 

It can be shown that for all values of A > 1 the quantity $‘(l) $ 
z’<l) < 0 whilst z*(l) > 0. Thus magnetohydrodynamic effects in this 
case always increase the friction on the rotating surface, as would be 
expected, because in this problem there is no electric field. 

If we use (3.2) we obtain a formula for the moment 

=a ~ = 1 + w #, (A), 
L,(O) 

L,(O) = 4nqv*a & 
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and the function 

f 
a 

(hj = 4h4 In h - (3h” - 1) (an - 1) 

16x2 (X2 - lj 
(3.5) 

remains positive for all values of X > 1. 

we also deduce formulas for the stress and turning moment on the 
stationary surface r = b 

(0) __ q"o 2 
Fb - a )“-I 

=b 

(3.6) 

~ = 1 - M”fb (a,), ft, @) = 
Al- 1 - 4h2 In k 

L,(O) 16(X2-l) ’ 
L,(O) = - L,(O) 

Here the quantities z’iA(X), $‘<A) - E’(X) and fb(x> will be POSitiVe 
for all values of x > 1. This means that on the stationary surface, the 
magnetic field has the effect of reducing friction. 

In conclusion, the author wishes to thank G. A. Liubimov and M.N. Kogan 
to whom he is indebted for valuable observations on reviewing the paper. 
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